
Uncorrected Proof

Arch Clin Infect Dis. 2019 April; 14(2):e65744.

Published online 2019 March 12.

doi: 10.5812/archcid.65744.

Review Article

Overview Perspective of Bacterial Strategies of Resistance to Biocides

and Antibiotics

Mehdi Goudarzi 1 and Masoumeh Navidinia 2, *

1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding author: Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel:
+98-9121348247, Email: dr.navidinia@sbmu.ac.ir

Received 2017 December 31; Revised 2018 September 01; Accepted 2018 September 18.

Abstract

Context: Considerable controversy surrounds the use of biocides in an ever-growing range of consumer products and the eventu-
ality that their indiscriminate consumption might decrease biocide effectiveness and modify susceptibilities to antibiotics. Several
line of evidence suggest that exposure to biocides may cause increased antibiotic resistance. Thus, we reviewed the common resis-
tance strategies of bacteria against both biocides and antibiotics.
Methods: Several publications have explained the cell target of biocides and the various mechanisms used by bacterial cells to es-
cape biocides’ toxic activity. Here, we briefly reviewed the commonly used resistance mechanisms of bacteria against both biocides
and antibiotics.
Results: Biocides could act on multiple sites in microorganisms and cause resistance by non-specific means. We mentioned several
mechanisms such as efflux pumps, cell wall changes to the reduction of permeability, genetic linkage with both biocide resistance
genes and antibiotic resistance genes, the penetration/uptake changes in envelope by passive diffusion, effect on the integrity and
morphology of membrane, and effects on diverse key steps of bacterial metabolism. Along with this toxic effect and stress, bacterial
cells express some similar defense strategies that can overlap the main functions conferring resistance versus structurally non-
related molecules.
Conclusions: It can be stated that healthcare-associated, community-acquired, and nosocomial infections should be surveyed an-
nually. Since biocide-antibiotic cross-resistance can be conferred by a number of distinct mechanisms, it is important to evaluate
the propensity of a bacterium to express these mechanisms. Advances in modern genetic methods and the development of an assay
using specific chemosensitizers or markers might allow the development of routine tests to identify resistance mechanisms. Fur-
ther studies are needed to establish a correlation between biocide exposure (s) and development of antibiotic resistance, but the
number of studies in the clinical or environmental settings is limited.
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1. How Can Bacteria Become Resistant to Biocides?

Generally, bacterial resistance to biocides is not very
common due to the lack of known detoxifying enzymes
and target multiplicity inside the cell. In general, some
mechanisms related to resistance are cellular changes on
biocide accumulation, cell envelope changes, limited up-
take, and efflux mechanisms expression. Still, target site
mutations related to biocide resistance are not clearly un-
derstood. Also, there are several multidrug efflux systems
that play an important role in biocides resistance. There is
a large body of information regarding biocide resistance
such as high- and low-levels of resistance to triclosan, resis-
tance to chlorhexidine and quaternary ammonium com-
pounds (QACs) in low-level of resistance in Staphylococcus

aureus, low level of resistance to chlorhexidine and QACs in
Pseudomonas aeruginosa, low-level resistance to QACs, and
chlorhexidine in Pseudomonas stutzeri. Most of the time,
resistance level is not stable and not likely to be of signif-
icance.

Minimum inhibitory concentration (MICs) of highly
resistant strains maybe much higher thanthose in some
biocides at residual biocide concentrations used in clinical
setting. Biocide resistance can increase through mutation
or elaboration of an endogenous chromosomal gene or
by obtaining the resistance characteristics related to extra-
chromosomal genetic elements by means of transposons
or plasmids. Resistance related to the inactivation of bio-
cides has been identified, but it is comparatively rare and
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specific to a few classes of biocides. Mostly it happens due
to the multiplicity of cellular targets for biocides, changes
in cell envelope permeability or enhanced biocide efflux as
summarized in Box 1.

Box 1. Common Strategies to Achieve Biocide Resistance

Biocide Resistance Mechanisms

Multiplicity of cellular targets for biocide

Changes in cell envelope permeability

Efflux determinants enhance biocide efflux

Change in surface properties

Modification

By-pass metabolic blockage

Here, we explained in detail the common strategies for
biocide resistance mechanisms.

1.1. Multiplicity of Cellular Targets for Biocides

Compared with antibiotics, mutations related to tar-
get site are rare in biocide-resistant organisms, and bio-
cides have effects on multiple cellular components. Inter-
estingly, Escherichia coli appears to be triclosan resistant
due to mutations in the fabI gene related to the enoyl-acyl
carrier protein reductase synthesis that plays an important
role in fatty acid biosynthesis. Based on crystallographic
studies, triclosan interacts with FabI. FabI active site mu-
tations inhibit complex formation. With mutations in tri-
closan targets such as fabI and inhA in a number of bac-
teria, including Staphylococcus aureus, Pseudomonas aerug-
inosa, Haemophilus influenzae, Mycobacterium smegmatis,
Mycobacterium tuberculosis, E. coli and Bacillus subtilis, re-
sistance to triclosan happens. Remarkably, for less sus-
ceptibility to triclosan, bacteria can produce an enzyme,
named enoyl-acyl carrier protein reductases (e.g., FabK),
which naturally cannot be affected by this biocide (1).

1.2. Changes in Cell Envelope Permeability

Each permeability change causes reduction in biocide
concentration in the target sites. In spore-forming bacte-
ria, different parts of spore such as layers, cortex, and en-
velope can affect the level of resistance. In Gram-negative
bacteria, changes in outer membrane protein composi-
tion, surface hydrophobicity, outer membrane ultrastruc-
ture, and some changes in outer membrane fatty acid
composition, lipopolysaccharides, proteins (porins), fatty
acids, and phospholipids phospholipids cause resistance
that effect the accumulation of biocides. In mycobacte-
ria, mycoylarabinagalactan plays an important role in re-
sistance. Thus, Gram-negative organisms are more resis-
tant to biocides compared to their Gram-positive ones. In

addition, disruption of the outer membrane barrier func-
tion increases biocide susceptibility. Biofilm impermeabil-
ity might play an important role in the lack of biocide sus-
ceptibility in biofilm-producing bacteria. Pathogens resist
by forming biofilms to protect against the effects of bio-
cides, inactivating biocides’ targeting ability by means of
produced enzymes and increasing alternatives to the tar-
get sites of the biocide (1, 2).

In response to cetylpyridinium chloride, triclosan,
chlorhexidine diacetate, benzalkonium chloride, and
trisodium phosphate, a kind of adaptive resistance was
observed in Campylobacter jejuni and Campylobacter coli.
Also, cross-resistance to erythromycin, ciprofloxacin and
sodium dodecyl sulfate was identified The acquired resis-
tance was limited and stable and was related to various
types of active efflux, suggesting several mechanisms of
resistance that are unique to every experimental strain
due to differences in the outer membrane protein (OMP)
profile in each bacterial strain (3-8).

1.3. Efflux Determinants Enhance Biocide Efflux

Biocide resistance related to efflux determinants
shows wide substrate specificity and a diversity of struc-
turally non-related agents that can also include antibi-
otics. Multidrug efflux systems are divided into one of
the five classes, including MFS superfamily (the major
facilitator superfamily), ABC family (the ATP-binding cas-
sette), MATE family (the multidrug and toxic compound
extrusion), SMR (the small multidrug resistance family),
DMT (drug/metabolite transporter), and RND family (the
resistance-nodulation-division). Interestingly, efflux sys-
tems such as MFS, ABC, SMR and MATE are found widely
in both Gram-positive and negative bacteria, while RND
superfamily is only distributed in Gram-negative bacte-
ria. Efflux pumps present not only an inner membrane
transporter but also an outer membrane channel and
a periplasmic adaptor protein, such as the RND type ef-
flux pumps. It was proven that RND family pumps are
related to significant antibiotic resistance in Pseudomonas
aeruginosa (MexB) and Escherichia coli and Salmonella
typhimurium (AcrB). In Gram-positive bacteria, MFS family
was identified (such as NorA in Staphylococcus aureus and
PmrA in Streptococcus pneumoniae) (9-13).

Today, emergence of multi-resistance in Gram-negative
pathogens (particularly Stenotrophomonas maltophilia,
Pseudomonas aeruginosa, Acinetobacter spp. and the Enter-
obacteriaceae) is the main problem in medicine. In these
organisms, three-component multidrug efflux systems
play important roles in both intrinsic and acquired multi-
resistance. The similarity of these efflux systems is also
readily identifiable in a wide range of Gram-negative or-
ganisms. Perhaps, they advance efflux-mediated resistance
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to multiple antimicrobials. Sometimes, these systems en-
hance multiresistance in Gram-negative pathogens.
However, some arguments exist as to the natural task
of these efflux systems. Their contribution to resistance
in a diversity of pathogens makes them suitable targets
for medical purposes. Presumably, many novel or yet to
be demonstrated antimicrobials are themselves efflux
substrates and, efflux inhibitors may become an impor-
tant subject of antimicrobial therapy for Gram-negative
bacteria (14, 15).

The importance of EfrAB in multidrug resistant entero-
cocci was demonstrated by the role of EfrAB in the efflux of
antibiotics and biocides. EfrAB could be an attractive tar-
get both in enterococci present in food matrix and those
causing infections. Also EDTA is used as a therapeutic agent
in combination with low doses of antibiotics (16).

1.4. Change in Surface Properties

Decreased binding and interaction between cell sur-
face charge and biocides occur due to change in surface
properties. The threshold value is different in the sta-
tionary and dividing states for a given bacterium. It was
proven for the effect of cationic substrate charge density
to the induction of bacterial death. Also, in Gram-positive
and Gram-negative bacteria, the effect of cationic substrate
charge density happens after adsorbing on the function-
alized substrate and depends on the metabolic state. It
can be stated that divalent counter ions removal from the
bacteria pending adsorption on charged surfaces enforce
non-viability following bacterial envelope disruption. In
the case of Gram-positive bacteria, electrostatics is very
important in the search for bacterial proliferation control
by means of non-chemical methods. It can be stated that
highly charged cationic surfaces by means of a substitute
to antibiotics can emerge expanded resistant strains (17).

To create antimicrobial polymer brushes on inorganic
surfaces, synthesis of poly (quaternary ammonium) com-
pounds has been applied. For maximum kill efficiency,
surface charge density is a critical element in designing
a surface. The most biocidal surfaces had charge densi-
ties greater than 1 - 5 × 1015. Antimicrobial species can
be coupled covalently to material surfaces to obtain bio-
cidal effect without biocide liberation into the environ-
ment. Also, such materials can decrease resistance to the
active agent. In recent studies, the successful covalent at-
tachment of polymeric antimicrobial materials onto glass,
metal, paper, and polymer has been reported. Most of the
time, the biocidal polymer included cationic groups, such
as alkyl pyridinium or quaternary ammonium. Cationic
antimicrobials are particularly well positioned to act as
self-disinfecting surfaces. Newly, a cationic surfactant

within polymer microspheres such as quaternized poly-2-
(dimethylamino) ethyl methacrylate (poly DMAEMA) dis-
plays high levels of antibacterial activity. In the scope
of surface-active compounds, the quaternary ammonium
salts (QAS) as cationic antimicrobials display are highly
promising (17-33).

1.5. Modification

Intracellular and extracellular concentration reduc-
tion of a biocide can cause resistance. Compared with their
small molecule counterparts, biocides as dendrimer are
more potent. It was proven that detriment to the cell mem-
branes is a kind of primitive mechanism of the antimi-
crobial action for dendrimer biocides. The efficacy of the
dendrimer biocides can be restricted by high concentra-
tions of calcium ions. Also, studies based on differential
scanning calorimetric demonstrated that at high concen-
trations, dendrimer biocides bring precipitates with phos-
pholipid vesicles, and a severe interaction with this model
of bacterial membrane occurs. In this respect, negatively-
charged bacteria and high positive charge density in the
dendrimer biocides brings them into contact with each
other. The presence of dendrimer biocides in a bacte-
rial suspension causes an initial wave of dendrimer bio-
cides replace calcium and magnesium ions from bacteria
and bind to the negatively charged phospholipid mem-
branes. Thus, a slight conversion in the permeability of
the membrane occurs. Also, it is thought that binding
without delay frustrates and even reverses bacterial sur-
face charge. At this stage, all changes pertaining to bac-
teria are reversible. Thus, more dendrimer biocides with
relatively high concentrations may cause denaturation of
membrane proteins and interpenetration of the phospho-
lipid bilayer. Therefore, enhanced membrane permeabil-
ity propels potassium ions leakage. This concentration of
dendrimer biocides relates to a bacteriostatic level. If more
dendrimer biocides exist, it can further unfix the mem-
brane structure. Finally, high concentrations of dendrimer
biocides propel a complete disintegration of the bacterial
membrane related to a bactericidal effect (34).

1.6. Bypass Metabolic Blockage

The common use of biocidal compounds is free of risks.
FabI, a unique cellular target for triclosan, is an enoyl-acyl
carrier protein (ACP) involved in the biosynthesis of fatty
acids. Also, it is thought to act non-specifically on bacte-
rial cell membranes. By-pass metabolic blockage increases
synthesis of pyruvate and the production of fatty acids by
means of an altered metabolic pathway (expression of ‘tri-
closan resistance network’). There is concern as to the bio-
cides misusage in industries related to animal husbandry
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and food production. The appearance of cross-resistance
to antibiotics occurs by selective pressures due to biocide
usage and tolerance enhancement to one or more of these
compounds. Biocide tolerance has been reported for most
classes of agents. It has been documented for several
pathogens related to zoonotic infections involving Campy-
lobacter spp., Escherichia coli, Staphylococcus, Pseudomonas
spp. and Listeria spp., about tolerance to biocide and re-
lated to reduced susceptibility to clinically main antimi-
crobial compounds is argumentative (34-45).

2. How Can Bacteria Become Resistant to Antibiotics?

Antibiotics have greatly influenced life on earth since
1930s. Antimicrobial resistance is one of the most im-
portant health concerns. In the last decade, the occur-
rence multidrug-resistant bacteria in community and hos-
pitals along with the problem of nosocomial infections
has spiked. Emerging of threats to the end of the “an-
tibiotic period” during four decades of extravagant antibi-
otic utilization has caused practicable selective pressure
on high-level antimicrobial resistance and multiple-drug
resistance (MDR) antibiotics (46, 47).

Bacteria have some resistance strategies against an-
tibiotics as follows: the clinical broad-spectrum applica-
tion may be restricted by resistance single-step acquisi-
tions. Thus, specific antibiotics against a pathogen will
have potential to dominate this liability if suitably de-
signed. The “multi-target hypothesis” discusses that an-
tibiotics designed to for single protein targets will lose out.
Because in human infections, high load of bacteria is suf-
ficient to choose mutants strains due to missense changes
that will cause the antibiotic useless. This information lead
to expanding the utilization of single-target inhibitors as
monotherapy, but to slow down the rapid improvement of
clinical resistance in single-target inhibitors, emerging re-
sistance profiles of FabI inhibitors propose key drug prop-
erties that should be optimized. It is very important that
drugs have very high potency or low MIC. Drugs with high
potency and a low toxicity profile permit to use for clini-
cal setting. For single-step resistance to shifting the antibi-
otic dose, this suppressed potency enhances the potential
required to medicate concentrations resistant strains that
cannot be sustained. To increase drug binding, each side-
chain interaction causes a chance for a missense mutation.
By a rate-controlling step in the missense mutations, cat-
alytic residues confer a fitness cost to the cells. Thus, exper-
imental evaluation of drug resistance must be an early and
integral part of the antibiotic expansion procedures rather
than something figured out at the end (48).

Slow-binding inhibitors improves potency and target
selectivity. For drug efficacy, slow-binding conformational

change is critical but for maintaining the desired confor-
mational change, resistance mutations should occur at
residue positions. Two slow-binding FabI inhibitors tri-
closan and isoniazid cause vulnerability. There are sev-
eral isoniazid-resistant InhA mutations located in posi-
tions that do not directly encounter the drug. These mu-
tations are related to protein sequences that play impor-
tant roles in the conformational change responsible for
the slow-binding characteristics. Increased bacterial infec-
tions are now problematic or impossible to cure because
of the misuse of antimicrobial drugs and the epidemic
spread of bacterial resistance to these drugs (49-51).

Diarrhea is one of the gastrointestinal diseases related
to inappropriate antibiotic treatment, and enhanced an-
tibiotic resistance causes problems in the health systems
which can vary in different societies (52). According to
studies on human gut microbiome, adopting a pathogen-
selective approach can be beneficial. Treatment with
broad-spectrum antibiotics lead to severe disturbances in
the human microbiome, reduced infection resistance, and
allergic and metabolic diseases development (53, 54). It has
been proven that treatment with broad-spectrum antibi-
otics in early life is significantly related to the development
of type 2 diabetes, obesity, and celiac disease (55, 56).

Several factors including stress, metabolism, genetics,
age, diet, geographical region, and antibiotic treatment
are dynamic entities which influence on microbiome. The
microbiota profile of children is affected by the consump-
tion of antibiotics. Yet, the impact of early life antibiotics
treatment on development of CNS has not yet been real-
ized (57). Also, some changes occurred in the brain de-
velopment and behavior of mice after treatment with an-
tibiotics and gut microbiota depletion from early adoles-
cence, and some changes emerged with a restructuring of
gut microbiota populations (58). For example, the treat-
ment of colitis infections due to Clostridium difficile with
broad-spectrum antibiotics leads to the elimination of the
gut microbiome. Broad-spectrum antibiotics make several
thousand-fold reductions in gut microbial load (54, 59).

Firmicutes include bacteria belonging to the gut mi-
crobiome. It is assumed that firmicutes are immune
against FabI inhibitors by means of encoding an FabK
(different enoyl-ACP reductase isoform). Some pathogens
encoding FabI include Neisseria, Shigella, Acinetobacter,
Campylobacter, Staphylococcus aureus, Enterobacteriaceae,
Pseudomonas, Salmonella, and Mycobacterium spp. (60).

Lack a proper combination of antibiotics, would have
various consequences on public health (61-68). The specific
strategies for antibiotic resistance have been summarized
in Box 2.

Each of these specific strategies to achieve common an-
tibiotic resistance are explained below.

4 Arch Clin Infect Dis. 2019; 14(2):e65744.

http://archcid.com


Uncorrected Proof

Goudarzi M and Navidinia M

Box 2. Specific Strategies for Common Antibiotic Resistance Mechanisms

Antibiotic Resistance Mechanisms

Beta-lactams

Enzymatic destruction

Altered target

Decreased uptake

Glycopeptides

Altered target

Aminoglycosides

Enzymatic modification

Decreased uptake

Altered target

Quinolones

Decreased uptake

Altered target

2.1. Beta-Lactams (Such as Penicillin, Mezlocillin, Ampicillin,
Ceftazidime, Aztreonam, Imipenem, Cefazolin, Piperacillin,
and Cefotaxime)

2.1.1. Enzymatic Destruction

Beta-lactamase enzymes can destruct beta-lactam
rings and lead to achieving resistance. When the beta-
lactam ring is destroyed, the antibiotic cannot bind to
penicillin-binding protein (PBP) and interfere with cell
wall synthesis. Resistance of Enterobacteriaceae against
cephalosporins, penicillins, and aztreonam and resistance
of staphylococci to penicillin are related to enzymatic
destruction of beta-lactam drugs.

Extended-spectrum β-lactamase (ESBL) is an enzyme
that can cause resistance to monobactams and extended-
spectrum third generation cephalosporins but does not af-
fect cephamycins or carbapenems. If the infectious agent
is an ESBL-producing organism, it can result in the failure
of treatment using third-generation cephalosporins and
monobactams. Because ESBL-producing strains are resis-
tant to penicillin, cephalosporin, and aztreonam. Addi-
tionally, ESBL has been identified in a range of Enterobac-
teriaceae and Pseudomonadaceae worldwide. Thus, the A,
B, C, and D molecular classes of β-lactamase enzymes are
identified according to conserved amino acid motifs. B β-
lactamases that use at least one active-site zinc ion for β-
lactam hydrolysis are metalloenzymes, while classes A, C,
and D contain enzymes that can hydrolyze substrates by
forming an acyl enzyme by means of an active site serine
(64).

2.1.2 Altered Target

Inhibition of cell wall synthesis occurs when muta-
tional changes in original PBPs or acquisition of different
PBPs change the ability of the antibiotic to bind to PBPs.
Altered target occurs in staphylococci resistance to methi-
cillin and oxacillin. The presence of mecA causes the resis-
tance of S. aureus to methicillin. For all beta-lactam antibi-
otics, PBP2a has a low affinity compared to other PBPs. It is
proposed that the origin of mec operon in S. aureus is S. sci-
uri and the mecA-positive coagulase negative staphylococci
(CoNS), particularly S. epidermidis. Also, the acquirement of
the mecA region from S. fleurettii, a commensal bacterium
of animals, has been reported (61-63, 69).

Unfortunately, methicillin-resistant Staphylococcus au-
reus (MRSA) is resistant to all beta-lactam antimicrobial
drugs such as penicillin, cefoxitin and oxacillin, except for
newer cephalosporins with anti-MRSA activity (63).

2.1.3. Decreased Uptake

Reduced uptake occurs because of porin channel for-
mation. Porin channel is where beta-lactams pass the
outer membrane of Gram-negative bacteria to obtain the
PBP. Thus, every change in these channels can decrease
uptake of beta-lactams. Resistance of Enterobacter aero-
genes, Klebsiella pneumoniae and Pseudomonas aeruginosa
to imipenem occurs due to decreased uptake (61).

Recently, porin channels have been demonstrated in
relation to bacterial resistance to antimicrobial agents
and, particularly, to efflux phenomenon. In Escherichia coli,
several porin proteins have been identified, such as OmpC,
OmpF, PhoE, OmpC and OmpF. In Pseudomonas aeruginosa,
outer membrane proteins such as OprB, OprC, OprD, OprE,
OprF, and OprP have been identified to act as porins (70).

2.2. Glycopeptides (Such as Vancomycin)

Vancomycin is a glycopeptide antibiotic. There are
nine vancomycin resistance genes including van A, B, C, D, E,
G, L, M, and van N in Enterococci. Van A is the most common
type worldwide, which is mainly related to vancomycin-
resistant Enterococcus faecium, allowing a great rate of van-
comycin and teicoplanin resistance. Van B causes a high de-
gree of vancomycin resistance, yet it is susceptible to other
glycopeptides such as teicoplanin. MRSA isolates which are
susceptible only to glycopeptides, such as vancomycin, are
becoming multidrug-resistant. Now, low level resistance
to vancomycin is emerging and increasing (48, 70).

2.2.1. Altered Target

Enterococci resistance to vancomycin is due to al-
tered target. Alterations in cell wall precursor compo-
nents emerge and can decrease vancomycin binding so
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that cell wall synthesis can be continued. Increasing
antibiotic resistance in common bacterial pathogens, in
both hospitals and communities, causes a growing threat
to human health worldwide. Vancomycin-resistant en-
terococci (VRE) are a major concern in medical practice.
Their increased prevalence and their ability to transfer
vancomycin-resistance genes to other bacteria (including
MRSA) have made them a subject of close scrutiny and in-
tense investigation (61, 62).

2.3. Aminoglycosides (Such as Amikacin, Netilmicin, Strepto-
mycin, Kanamycin, Gentamicin, and Tobramycin)

VRE can acquire resistance to erythromycin, glycopep-
tides, tetracycline, and vancomycin. Enterococcus is capa-
ble of acquiring resistance genes, including high-level re-
sistance (HLRA) to aminoglycoside antibiotics. High-level
gentamicin resistant (HLGR) enterococci are resistance to
gentamicin. HLSR are enterococci with high-level resis-
tance streptomycin. It is so difficult to drug selection for
treatment of infected patients with carbapenems resistant
strains. Alternative therapeutic options include tigecy-
cline, aminoglycosides, sulbactam, and polymixyns. For
example, both tolerance to desiccation and bacterial resis-
tance development by means of antibiotic selective pres-
sure caused the spread of A. baumannii in a hospital set-
ting. Resistance to several classes of antibiotics includ-
ing aminoglycosides, fluoroquinolones, beta-lactams, and
third generation of cephalosporins was reported in MDR A.
baumannii. Also, pandrug resistant (PDR) A. baumannii was
resistant to all tested antibiotics except tigecycline and col-
istin.

Limitation of polymyxins and aminoglycosides con-
sumption was reported to be due to wide range of an-
timicrobial resistances in MDR P. aeruginosa. Thus, these
drugs may or may not be as efficient as first-line drugs of
choice, and detrimental effects such as ototoxicity, neu-
rotoxicity and nephrotoxicity occur after their consump-
tion. In serious infections such as burn wound infections
caused by Pseudomonas aeruginosa, treatment is by means
of combination of beta-lactam drugs and an aminogly-
coside. Emerging resistance of Pseudomonas aeruginosa
to β-lactams, aminoglycosides, and fluoroquinolones can
cause serious problems in the treatment of burns patients
(59).

2.3.1. Enzymatic Modification

This alters various sites on the aminoglycoside
molecule, such that this drug’s ability to bind to ribo-
somes and inhibit protein synthesis is greatly reduced
or lost entirely. Aminoglycosides resistances due to en-
zymatic modification occur in many Gram-positive and
Gram negative bacteria (71). Most plasmid-mediated

AmpC β-lactamases belong to the DHA, FOX, and CMY
families, and Qnr, aac(6’)-Ib-cr and QepA are three plasmid-
mediated quinolone resistance (PMQR) mechanisms.
Seriously, reduced effectiveness of amikacin and other
amino-glycosides in MDR bacteria increase due to existing
of aac(6’)-Ib gene. These mechanisms are widely prevalent
among common clinical isolates (68).

2.3.2. Decreased Uptake

Any change in the number or characteristic of porin
channels for the passing of aminoglycosides during the
outer membrane can cause reduced uptake of aminogly-
cosides. Resistance of a variety of Gram-negative bacteria
to aminoglycosides occurs in this situation (71).

2.3.3. Altered Target

Ribosomal proteins modification of 16s rRNA is very
important in emerging resistance. It decreases aminogly-
cosides’ ability to successfully bind and halt protein syn-
thesis. Resistance of Mycobacterium spp. to streptomycin
happened through this mechanism (71).

Commonly, serious infections due to Pseudomonas
aeruginosa are treated with a combination of aminogly-
cosides and beta-lactams. Thus, an extremely important
antibacterial resistance profile may emerge due to the
production of a 16S rRNA methylase. The mechanism of
aminoglycosides resistance by means of 16S rRNA methy-
lase production has been detected since 2003. Methyla-
tion of 16S rRNA has occurred as a high-level aminogly-
coside resistance mechanism among bacteria in recent
yearsAminoglycosides, often in combination with broad-
spectrum beta-lactams, play an important role in the man-
agement of serious bacterial infections. So far, seven types
of methylases have been identified including RmtB, RmtE,
RmtD, ArmA, RmtA, RmtC, and NpmA. These genes are en-
coded by bacterium-specific recombination systems, such
as transposons, and are easily translocated to other DNA
target sites (68).

2.4. Quinolones (Such as Ciprofloxacin, Norfloxacin, Lev-
ofloxacin, and Lomefloxacin)

DNA gyrase and topoisomerase IV are two enzymes
essential for bacteria viability which are inhibited by
quinolones. Frequently, quinolone resistance is related
to chromosomal mutations such as gyrA, gyrB, parC and
pare. Sometimes, a decreased uptake or an increased ef-
flux due to mutations causes reduced drug accumulation.
Also, quinolone resistance genes related to plasmids have
been identified, such as the qnr gene that blocks the ac-
tion of quinolones on the DNA gyrase and topoisomerase.
Another one is the aac(6’)-Ib-cr gene that modifies piper-
azine ring amino group of the fluoroquinolones. Efflux
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pump encoded by the qepA gene can decrease intracellu-
lar drug levels. It can be stated that all plasmid-mediated
resistances cause a low-level resistance (72).

2.4.1. Decreased Uptake

Resistance to various quinolones in Gram-negative
bacteria and staphylococci (efflux mechanism only) is due
to decreased uptake. Several alterations in the outer mem-
brane reduces drug uptake and/or an “efflux” pump acti-
vation. This situation causes the removal quinolones just
before the intracellular concentration of quinolones is suf-
ficient for inhibiting DNA metabolism (71).

2.4.2. Altered Target

Resistance to various quinolones in Gram-negative and
Gram-positive bacteria is due to altered target. Decreased
ability of quinolones to bind to DNA gyrase subunits and
interfere with DNA processes causes this resistance (71).

The incidence of antimicrobial resistance, includ-
ing quinolone resistance in Klebsiella pneumonia and Es-
cherichia coli, is increasing both in developed and devel-
oping countries. Successful treatment occurred in 83% of
patients with quinolone monotherapy, and who had no
infection-related mortality was reported in these cases, but
the success rate in treatment was lower in intravenous
treatment (73).

A positive correlation was reported between emer-
gence of MRSA and β-lactam combinations consumption.
Also, a positive correlation was reported between resis-
tance to carbapenems and aminoglycosides and use of β-
lactams combinations and quinolones and β-lactam com-
binations. Interestingly, the consumption of β-lactamase-
sensitive antibiotics was negatively related to resistance
to methicillin, quinolones, and aminoglycosides. Con-
sumption of the different antimicrobial therapeutical sub-
groups was also correlated. Consumption of β-lactamase-
sensitive antibiotics (penicillin) was positively correlated
to consumption of β-lactamase resistant penicillins and
negatively correlated to consumption of quinolones, car-
bapenems, and glycopeptides, whereas cephalosporins
consumption was positively correlated to consumption
of aminoglycosides, glycopeptides and, quinolones. The
annual increase in the incidence of coagulase-negative
staphylococci (CoNS) isolates is global concern. Also, the
presence of antibiotic resistance among CoNS species,
which cause nosocomial infections, has increased. Resis-
tance to antibiotics, including aminoglycosides, develops
quickly in CoNS species, where these antimicrobial agents
are widely used. Annual surveillance for monitoring in-
tegrons and the associated gene cassettes among noso-
comial pathogens of MRSA to determine clones distribu-
tion and detect emergence of new MRSA clones is needed.

Multi-drug resistant MRSA is an increasingly common hos-
pital pathogen in burns patients, which is associated with
integrons. It is known to cause over 50% of burn-related
mortalities (74, 75).

3. Biocide-Antibiotic Cross-Resistance

Bacteria face a myriad of stresses in natural environ-
ments. A variety of specific and highly regulated adaptive
responses were elicited by these stresses. These stresses
elicit a variety of specific and highly regulated adaptive
responses that not only protect bacteria from the offend-
ing stress, but also manifest cellular changes that impact
innate antimicrobial susceptibility. Thus, exposure to en-
velope stress, reactive oxygen, oxidative/nitrosative stress,
heat stress, nutrient stress, and ribosomal stress can pos-
itively impact resistance determinants or promote physi-
ological changes that compromise antimicrobial activity.
This review summarized the main advancements in deter-
mining the mechanisms of bacterial resistance to both bio-
cides and antibiotics (1, 76).

There are several protocols suggested for measuring
antibiotic susceptibility in bacterial strains, showing resis-
tance, tolerance or increasing insusceptibility to biocides
or vice versa. The different protocols cause the variabil-
ity of the results reported on antibiotic “resistance”. More
meaningfully studies used standardized antibiotic suscep-
tibility methodologies such as those given by the British
Society for Antimicrobial Chemotherapy (BSAC) or Clini-
cal and Laboratory Standards Institute (CLSI) to measure a
change in antibiotic susceptibility profile. Currently, there
are no well-referenced criteria for the evaluation of biocide
capability to induce or select for resistance to antibiotics.
Hence, it is necessary to develop methods to describe the
minimal concentration of a biocide which is able to select
or trigger the emergence/expression of a resistance mech-
anism that will cause clinical resistance against an antibi-
otic class in a defined bacterium.

4. Conclusions

Health authorities, such as the World Health Organi-
zation (WHO), the European Centre for Disease Preven-
tion and Control (ECDC), and the Infectious Diseases So-
ciety of America (IDSA), have enhanced industrial incen-
tives in an attempt to arouse research into novel antimicro-
bial combination, ameliorate antibiotic surveillance force
to cover the remaining therapeutic options to physicians
and encourage a focused, concerted endeavor against life-
threatening infections due to multidrug-resistant (MDR),
and pandrug-resistant Gram-negative bacteria. Patients
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with infections due to these microorganisms can be
treated with empiric antibiotic therapy. However, it has
been proven that improper antimicrobial therapy can be
decreased through using an empiric combination ther-
apy. However, combination therapy is a useful method for
obtaining a synergistic consequences and preventing the
emergence of resistance (49, 68, 70-76).

It was demonstrated that a patient’s clinical response
after receiving antibiotic does not always correlate with
the laboratory results. Because of emergence of biocide-
antibiotic cross-resistance, it is important to evaluate the
propensity of a bacterium to express these cross-resistance
mechanisms. Advances in modern genetic methods (e.g.
PCR, -omics) and the development of an assay using spe-
cific chemosensitizers or markers (e.g. efflux pumps in-
hibitors) might allow the development of routine tests to
identify resistance mechanisms. To establish a correlation
between biocide exposure(s) and development of antibi-
otic resistance, further studies are needed.
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