Relationship between Lifestyle Factors and Bone Density in Women Referring to Bone Densitometry Research Center in Shiraz, Iran

Iran Jahanbin 1, Elham Aflaki 2, Haleh Ghaem 3

1School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, IR Iran
2Department of Rheumatology, Shiraz University of Medical Sciences, Shiraz, IR Iran
3Department of Statistics, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran

Received: November 15, 2013; Revised: December 25, 2013; Accepted: January 25, 2014

Background: Osteoporosis is a serious problem worldwide, mainly because of the consequences of the diagnosis. However, many osteoporotic fractures can be prevented and treated.

Objectives: The aim of the study was to determine the relationship between lifestyle and bone mineral density (BMD) in women referring to bone densitometry Research center.

Materials and Method: This cross-sectional study was conducted on 1170 Pre-menopausal and post-menopausal women. Demographic, anthropometric, lifestyle data including physical activities, smoking habits, dairy intake and its consumption pattern, calcium intake, as well as, history of steroid intake was asked. Lumbar and femoral bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA). Based on the WHO definition the T-score value was considered for analysis.

Results: Participants’ mean age was 52.77 (± 9.8) years. Adjusted for age, the BMD significantly correlated to body weight for women. A lower body weight was a risk factor for the osteoporotic process in our participants (P < 0.001). The BMD of women who had more than four pregnancies showed a positive relationship with the osteoporosis of femoral neck and lumbar spine (P < 0.001). Physical activities were positively associated with BMD. This effect was stronger with hip than with spine BMD. Weakly positive associations were found between consumption of dairy products and BMD at the two measurement sites. Low dietary calcium intake and poor physical activity together with advancing age since menopause were independent risk factors for low BMD.

Conclusions: Bone densitometry should be used to assess the severity of bone loss, and to identify those in need of therapy. The follow up and early diagnosis of osteopenia should be carried out in order to institute proper therapy and prevent further osteoporosis.

Keywords: Lifestyle; BMD; Osteoporosis; Osteopenia; Women

1. Background

Osteoporosis is a common problem in women. Annually, this disorder leads to thousands of injuries with exorbitant cost of treatment. According to national statistics of health institute, about ten million people in America suffer from osteoporosis of which eight million are women (1). In addition, 18 million have low bone mass and are at risk for osteoporosis. Half of women aged 50 years and older will have at least one osteoporosis-related fracture in their lifetime (2). The prevalence of osteoporosis in Caucasian and Asian women is higher than others (3). Other risk factors are late menarche, early menopause, lack of regular physical activity, sedentary lifestyle, smoking, and caffeine, alcohol, drugs and steroids consumption, and inadequate vitamin D and calcium intake (4). Osteoporosis can affect people’s mental and social performance. Living with anxiety due to a chronic bone disease leads to depression, reduced social skills, decreasing individual’s independence in performing daily activities and loss of confidence. In a 1998 survey in the United States to determine the prevalence of osteoporosis in 337 white women aged 50 years and above referred to the Bone Densitometry Center, 53.3% were diagnosed with osteoporosis, with 37.7% exhibited decreasing bone mass and only 8.7% had normal bone. In 2004, Larijani and colleagues examined bone mineral density (BMD) in lumbar spine and femur in 553 (34% men and 66% women) healthy population of Tehran, randomly selected from 50 blocks. The results of bone densitometry showed that the bone density was higher in men than in women. Bone mass at age 60-69 years was decreased by 19.6% in spine and 18.5% in femur in women. The prevalence of osteoporosis in the lumbar spine and neck of femur in women at this age group was 33.4% and 5.9%, respectively (5). Bone density determination is one of the effective measures to reduce the risk of osteoporosis. Bone

Implication for health policy/practice/research/medical education:
Identifying lifestyle factors will aid in detecting those at greater risk of osteoporosis. So it can be instrumental in suggesting appropriate lifestyle changes to prevent osteoporosis. The present study will provide a basic data for further researches in modifications of osteoporosis risk factors. It is suggested to establish a counseling clinic beside the bone densitometry research centers.

Copyright © 2014, Health Policy Research Center, Shiraz University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
density is affected by lifestyle. Several studies have shown the relationship between lifestyle and incidence of osteoporosis (6). Taking calcium and vitamin D, regular exercise, reduced alcohol and caffeine consumption, and avoidance of smoking can increase bone mineral density (7). Since osteoporosis can be controlled significantly, the present study was conducted to explore the lifestyles of healthy and osteoporotic women in southern Iran.

2. Objectives

The aim of the study is to determine the relationship between lifestyle and BMD in women referring to bone densitometry Research center.

3. Material and Methods

This cross-sectional study was carried out on 1170 women, referred to Namazi bone densitometry research center from Oct 2011 to Dec 2011. The data collection consisted of two parts. The first part was subjects’ demographic data including age, number of pregnancies, number of children, age at last pregnancy, menopause, height, and weight and body mass index. The second part was information on the subjects’ lifestyle including consumption of dairy foods, white meat, vegetables, soft drinks, supplements such as calcium, tea, coffee, smoking, kind of physical activity, drugs including steroids and thyroid problems (hypothyroidism and hyperthyroidism), surgery on uterus or ovaries, and exposure to sunlight. After receiving acceptance from Ethics Committee of Shiraz University of Medical Sciences, we measured the subjects’ height and weight and their Body Mass Index (BMI) was calculated. The questionnaires were filled out at interview. Bone density in the lumbar region and neck of femur was assessed using Dual energy X-ray Absorptiometry (DEXA) by trained and qualified personnel of the research center. The results of DEXA were analyzed based on the definition of T-score value according to World Health Organization guideline (8). Having completed the questionnaire, coding was done and the statistical analysis was done using SPSS software (version 18). One-way ANOVA, post Hoc and chi-square tests. The level of significance was $P \leq 0.05$.

4. Results

A total of 1170 women with mean age 52.77 ± 9.8 participated in this study. The demographic characteristics of the subjects are shown in Table 1. Comparison between variables among healthy women and those with osteoporosis and osteopenia at neck of femur is shown in Table 2. Comparison between variables in healthy women and those with osteoporosis and osteopenia at vertebral spine is shown in Table 3. Our findings showed no relationship between risk of vertebral osteoporosis and smoking, consumption of dairy product, fish, vegetables, drinking large amount of tea and coffee, soft drinks, steroids, as well as sports and regular exercise, thyroid disorders, uterine and ovarian surgery. However, there was a positive relationship between vertebral osteoporosis and exposure to sunlight, consumption of alcohol and calcium supplement ($P = 0.05$). Osteopenia of femur did not correlate with any of the foregoing factors. However, there was a significant relationship between osteoporosis of femur neck and smoking, consumption of dairy and poultry products, fish and having regular exercise ($P = 0.05$). There was a direct relationship between the risk of vertebral and neck of femur osteoporosis and osteopenia and the number of pregnancies, number of children, age and BMI, based on the ANOVA statistical test ($P < 0.0001$). Interestingly, although the healthy women consumed more vegetables and poultry products and fish than women with osteoporosis, the difference was not statistically significant (53.6% vs. 46.7%). In addition, consumption of soft drinks by healthy women was much lower than that of women with osteoporosis (4.4% vs. 6.3%). Among women with osteoporosis at the neck of femur, 68.2% did not have exercise, and 12.7% of those with osteoporosis were tobacco smokers.

| Table 1 Demographic Characteristics of Women Referring to Bone Densitometry |
|---------------------------------|--------|-----------------|-----------------|---------------|
| Variables | No. | Mean ± SD | | |
| Age | 1129 | 52.77 ± 9.8 | | |
| No. of pregnancy | 1055 | 4.63 ± 2.5 | | |
| No. of children | 1055 | 4.03 ± 2.07 | | |
| Age at last pregnancy | 1035 | 31.14 ± 6.33 | | |
| Age of menopause | 748 | 47.65 ± 5.72 | | |
| Weight | 1151 | 67.05 ± 11.41 | | |
| Height | 1151 | 158.66 ± 6.34 | | |

<table>
<thead>
<tr>
<th>Variable</th>
<th>Neck of femur osteoporosis</th>
<th>Neck of femur osteopenia</th>
<th>Neck of femur healthy</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>60.82 ± 9.24</td>
<td>53.23 ± 9.24</td>
<td>48.94 ± 8.74</td>
<td>$P < 0.0001$</td>
</tr>
<tr>
<td>BMI</td>
<td>25.50 ± 4.92</td>
<td>25.97 ± 3.85</td>
<td>27.95 ± 4.41</td>
<td>$P < 0.0001$</td>
</tr>
<tr>
<td>No. of pregnancies</td>
<td>4.67 ± 3.05</td>
<td>4.77 ± 2.54</td>
<td>4.02 ± 2.06</td>
<td>$P < 0.0001$</td>
</tr>
<tr>
<td>No. of children</td>
<td>4.93 ± 2.39</td>
<td>4.16 ± 2.14</td>
<td>3.51 ± 1.67</td>
<td>$P < 0.0001$</td>
</tr>
</tbody>
</table>
was an important risk factor for decreasing BMD. Estab-
fore and after menopause respectively. Aging in women
gradual and rapid decrease in BMD during the period be-
(21), and El - Desouki et al. (22).

yakul et al. (19), the Jarupanich et al. (20), Guzman et al.
These results were in agreement with those of Pongchai-
BMD with increasing age and onset of menopause (18).

lumbar spine, bone density (17). A study conducted by
concluded that bone density was greater with increasing
BMI (16). And in Japan in 2007, Muraki’s research also de-
in bone mineral density of femur (P < 0.0001), which was
between vertebral osteoporosis and sun exposure and cal-
calk supplementation (P < 0.05). The study of Nguyen
in Australia showed that there was a relationship
between calcium supplementation and bone mineral
density (12). A survey conducted by Piasue et al., in Thai-
BMD and exposure to sunlight (13). They also found a significant
relationship between continuous activity and increase
in bone mineral density of femur (P < 0.0001), which was
consistent with the study of Muraki et al., who revealed a
relationship between exercise and increased BMD (14).
Also Muraki et al., in Japan showed that regular
physical activity of women played a significant role in
the prevention of osteoporosis (14, 15). Number of preg-
nancies, number of children, age and body mass index
(BMI) were significantly associated with risk for neck of
femur and lumbar spine osteoporosis and osteopenia. (P
< 0.0001). A study conducted by Shtrugna et al., in India
concluded that bone density was greater with increasing
BMI (16). And in Japan in 2007, Muraki’s research also
determined that increasing BMI is associated with higher
bone density The study of Young et al., revealed a positive
relationship between BMI and neck of femur, and not
lumbar spine, bone density (17). A study conducted by
Ghannam et al., showed a relationship between multiple
pregnancies and bone loss, and a significant decrease in
BMD with increasing age and onset of menopause (18).
These results were in agreement with those of Pongchai-
yakul et al. (19), the Jarupanich et al. (20), Guzman et al.
(21), and El -Desouki et al. (22).

The findings of this cross-sectional study showed a
gradual and rapid decrease in BMD during the period be-
fore and after menopause respectively. Aging in women
was an important risk factor for decreasing BMD. Estab-
lishing the appropriate BMI, and examining the suitable
lifestyle, testing for BMD at the appropriate time, identifying
those at risk are the necessary measures to be taken for
preventing osteoporosis and osteopenia, thus circum-
venting the associated disability and social consequenc-
es. According to our study and other investigations, the
inadequate knowledge of women about healthy lifestyles
and their lack of timely awareness to assess the risk fac-
tors and screening tests account for developing this
debilitating condition. Most patients do not visit their
doctors after bone densitometry for evaluation and sub-
sequent follow-up and solve their problem by arbitrary
consumption of supplements. Thus, it is recommended
to set up a counseling clinic for preventing the osteopo-
rosis and osteopenia in the Namazi BMD research center.
This will provide sufficient and necessary information on
improving the health of individuals, and women in par-
ticular, referred to this center.

Acknowledgements
I wish to express my sincere gratitude to prof. Omrani,
the head of the BMD research center of Namazi hospital
affiliated to Shiraz University of medical sciences for his
valuable cooperation. And also appreciate the generous
assistance of all personnel of BMD research center.

Authors’ Contribution
All authors have made substantial contributions to all
of the following: The conception and design of the study,
analysis and interpretation of data.

Financial Disclosure
There is no conflict of interest.

Funding/Support
This study was financially supported by Vice Chancellor
for Research Affairs, Shiraz University of Medical Sciences.

References
1. Ziccardi SL, Sedlak CA, Doheny MO. Knowledge and health beliefs
of osteoporosis in college nursing students. Orthopaedic Nurs.
2. Allinger RL, Braun MA, Lasus H, Whitt K. Factors influencing
osteoporosis knowledge: a community study. J Commun Health
3. Iacono MV. Osteoporosis: A national public health priority. J Peri-

